Reduced Graphene Oxide-TiO2 Nanocomposite Facilitated Visible Light Photodegradation of Gaseous Toluene

نویسندگان

  • Reza Ahmadkhaniha
  • Faezeh Izadpanah
  • Noushin Rastkari
چکیده

The photocatalytic degradation of gaseous toluene was investigated on TiO2 nanoparticles coated on reduced graphene oxide. Reduced graphene oxideTiO2 composite (RGO-TiO2) was synthesized via two step processes. The prepared RGO-TiO2 composite was characterized using SEM, XRD, and UV-visible spectra. A significant increase in light absorption to visible light was observed by RGO-TiO2 compared with that of pure TiO2 nano particles. The photocatalytic degradation efficiency of the RGOTiO2 composite was much higher than that of the P25 TiO2, 95% and 40% respectively. In our investigated conditions, the initial concentration, flow rate and relative humidity had significant influences on the photocatalytic degradation of gaseous toluene. The most efficiency was recorded at the 0.3 ppm concentration, 1L/min flow rate and 30% relative humidity. We believe that this TiO2 based composite material can be effectively used as a highly active and stable photocatalyst to remove various indoor air pollutants especially gaseous toluene. The photocatalytic degradation efficiencies of toluene increased slowly below 20% relative humidity and then decreased as the relative humidity increased further. The main reason of enhanced photocatalytic property might be the strong electron transfer ability, and the increased adsorption capacity of RGO sheets in the composites as well as the retarded charge recombination rate contributed by the energy level of the two materials. We believe that this TiO2 based composite material can be effectively used as a highly active and stable photocatalyst to remove various gaseous pollutants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حذف فتوکاتالیستی فرمالدئید از هوا با استفاده از نانوکامپوزیت اکسید تیتانیوم- اکسید گرافن احیاء شده

Background and Objective: Formaldehyde is a toxic volatile organic compound, which its removal from polluted air is essential. One of the techniques available for removing such compounds is photocatalytic degradation. The aim of this study was to investigate the photocatalytic degradation of gaseous formaldehyde on TiO2 nanoparticles coated on reduced graphene oxide Materials and Methods...

متن کامل

Enhanced Photocatalytic Remediation Using Graphene (G)-Titanium Oxide (TiO2) Nanocomposite Material in Visible Light Radiation

The petroleum compounds were photocatalytically remediated from water using graphene (G)titanium oxide (TiO2) nanocomposite material in visible light radiation. The G-TiO2 nanocomposite was synthesized using sol-gel technique, and its structural & morphological properties were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), part...

متن کامل

Ag2Se-Graphene/TiO2 Nanocomposites, Sonochemical Synthesis and Enhanced Photocatalytic Properties Under Visible Light

Ag2Se-Graphene/TiO2 composite was synthesized by a facile sonochemical method. The as-prepared products were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectrophotometer. During the reaction, both of the reduction of graphene oxide and loading of A...

متن کامل

Effective Electron Transfer Pathway of the Ternary TiO2/RGO/Ag Nanocomposite with Enhanced Photocatalytic Activity under Visible Light

Mesoporous TiO2/reduced graphene oxide/Ag (TiO2/RGO/Ag) ternary nanocomposite with an effective electron transfer pathway is obtained by an electrostatic self-assembly method and photo-assisted treatment. Compared with bare mesoporous TiO2 (MT) and mesoporous TiO2/RGO (MTG), the ternary mesoporous TiO2/RGO/Ag (MTGA) nanocomposite exhibited superior photocatalytic performance for the degradation...

متن کامل

Photocatalytic Degradation of Toluene, Butyl Acetate and Limonene under UV and Visible Light with Titanium Dioxide-Graphene Oxide as Photocatalyst

Photocatalysis is a promising technique to reduce volatile organic compounds indoors. Titanium dioxide (TiO2) is a frequently-used UV active photocatalyst. Because of the lack of UV light indoors, TiO2 has to be modified to get its working range shifted into the visible light spectrum. In this study, the photocatalytic degradation of toluene, butyl acetate and limonene was investigated under UV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017